Agriculture is both an occupational practice and a subject to be studied. Farmers, horticulturists, and ranchers are examples of individuals who grow things for human use. Scientific researchers who experiment to improve plant and animal productivity; historians who examine the development of agrarian processes and the industry; and ecologists who study fields and fish ponds as managed ecosystems are examples of those who pursue agriculture as an area of academic interest. Decision making, leadership, research, and many other roles in modern agriculture require a college education in fields such as agronomy, animal husbandry, pathology, floriculture, agricultural economics, and mariculture.

Farming began early in the development of human society. The earliest ancestors of modern humans were scavengers, hunters, and gatherers. The search for food was an ongoing process, and the collected items were consumed shortly after being found. The abundance of food was very dependent on periodic variations in weather and natural disasters such as flood, fire, drought, and severe cold. The beginnings of agriculture rest with individuals who learned to plant seeds of edible crops or keep a small herd of goats or maintain a flock of chickens.

The transition to sustainability involved using the milk of the goats, or gathering eggs, rather than butchering animals as soon as possible for meat. Some cultures were ingenious in developing ways to obtain multiple sustainable resources from a single species. Examples of this are the cattle herded by the Masai of present-day Kenya and Tanzania, and reindeer managed by many indigenous peoples of northern Eurasia. These animals provide resources such as milk, meat from excess calves, and even blood as food, plus leather and bone for clothes, tools, and ornaments.

Globally, a variety of cultural patterns developed as family units grew into villages, villages into towns, and ultimately towns grew into the complex urban cultures present throughout the world today. With the concentration of humans into cities, the ability of the individual to produce food for a family unit declined to the point where as of the twenty-first century a large number of individuals are totally dependent on others for their nourishment. In some societies this involves a daily trip to the marketplace where family farmers sell the products of their efforts. In many less-developed countries a great deal of the food consumed is still self-produced or obtained from small agricultural units in this manner. In more developed and industrialized countries, the local market has been extensively replaced by large chain stores that distribute packaged and processed foods that are produced by large commercial farms, ranches, and orchards. However, even in these highly developed areas, there are many who prefer locally grown foods and flock to farmers markets, organic food stores, and other small businesses.

A wild rice plant growing in Ocala, Florida. For the earliest ancestors of modern humans, the search for food was an ongoing process.
A wild rice plant growing in Ocala, Florida. For the earliest ancestors of modern humans, the search for food was an ongoing process.

Modern agriculture is now a big business, which is driven by everincreasing scientific knowledge. The family farm found throughout America during the twentieth century is disappearing. These traditional, somewhat self-contained operations, where field crops were grown to produce grain, and gardens cultivated for vegetables, and a mixture of animals including cows, pigs, chickens, and sheep produced food and necessary materials such as leather and wool, are no longer economically practical. They have, in the industrialized world, given way to corporate farms that operate in much the same way as other large businesses. These agricultural units include not only the obvious specialized food-producing dairy farms, poultry operations, apple orchards, cattle ranches, and expansive wheat, corn, and soybean fields, but also such industries as catfish farms, shrimp nurseries, and oyster cultures. Agriculture also produces nonedible products such as tobacco and cotton, and grain for the production of methanol, a substitute for fossil fuels.

The agricultural operations of the past depended greatly on the intuition and experience of the family unit concerning when to plant, how to recognize a disease in the herd, and the best time to harvest. This information was passed from generation to generation. Decisions are now based on research and development carried out by university and private industry scientists. At one time it was a matter of knowing which farmer in the township had the best bull and bartering with him or her to bring this fine specimen to one's herd of females. Today genetic research has resulted in the development of the best bull in the country, and a farmer can order frozen sperm from across the continent. In fact, in this new millennium, the commercial distribution of cloned embryos of individual livestock specimens with the best possible characteristics is at hand.

Genetic engineering has virtually unlimited potential for producing frost-and disease-resistant crops, high-yield animals, products with a longer shelf life and a better flavor, and a multitude of other advances. Biotechnology, which has the great promise of advancing agriculture, has potential deleterious effects. For example, it could result in the herbicide-resistant gene inserted in a grain variety being transferred through unintended hybridization into a natural population of a related "weedy" or deleterious species, allowing it to prosper out of control.

Not only has modern agriculture introduced additional science into the barnyard, it has also brought in the economists, the lawyers, the television commentators for agri-business shows, and a multitude of businesspeople who advertise and market the product. This is a far cry from a farmer selling his best calf at the end of the summer at the county fair.

Finally, there is another element of modern agriculture. When farms were spread out across the countryside interspersed with wood lots, or when cattle production involved letting the herd range over hundreds of acres

A herd of Holsteins eat silage from troughs on a Minnesota farm. Modern agriculture is now a big business, which is driven by ever increasing scientific knowledge.
A herd of Holsteins eat silage from troughs on a Minnesota farm. Modern agriculture is now a big business, which is driven by ever increasing scientific knowledge.
during the summer, the local impact on the land and environment was relatively low (although the total impact was high, given the large number of acres devoted to agriculture). Modern, high-intensity agriculture with fields cultivated using tractors as large as elephants, fertilizers, pesticides, and irrigation systems is a potential threat to the environment. These techniques can place high demands on freshwater sources and have the potential for introducing toxic contaminants and excess nutrients into streams and rivers or promoting soil erosion. High-density animal production, such as hog farms in North Carolina, cattle feed lots in the Midwest, and turkey and dairy farms in the Shenandoah Valley, produce fecal contamination that can pollute waterways with bacteria and cause cultural eutrophication of aquatic ecosystems due to excess nutrients. Even the best planned containment of animal wastes can break down under the flood conditions of hurricanes and high rainfall years.

The human population is growing at such a high rate that humans in less-developed countries will surely starve and die without pulses of progress such as the green revolution that produced high-quality rice for underdeveloped countries in the 1960s. Prevention of this situation is the hope of industrial and biological technology advances that are sure to happen during the twenty-first century. However, this is a double-edged sword. Agricultural progress without due attention to environmental impacts has the potential for creating a world that will not be desirable to live in for the people supported by its products.

SEE ALSO Agronomist ; Grain ; History of Agriculture ; Horticulturist ; Organic Agriculture

Dean Cocking


Cooper, Elmer L., and L. Devere Burton. Agriscience: Fundamentals and Applications, 3rd ed. Albany, NY: Delmar Publishers, 2000.

National Research Council. Genetically Modified Pest-Protected Plants. Report by Committee on Genetically Modified Pest-Protected Plants. Washington, DC: National Academy Press, 2000.

Smith, Bruce D. Emergence of Agriculture. New York: Freeman and Company/Worth Publishers, 1999.

Also read article about Agriculture from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic: